

Т

Nov 2020			Suggested Marking Scheme & Solutions	Syllabus	Mar	ks
Рар	er 2		Singapore – Cambridge O Level Physics	6091	80	
1	(a)	a vec	tor quantity: displacement OR force OR acceleration OR relevan	nt answer		[4]
		a sca	lar quantity: distance OR time OR relevant answer		A1	[1]
	(b)	(i)	magnitude of velocity is constant.		B1	
			direction changes / rotate 360°, velocity changes.		B1	[2]
		(ii)	 ANALYSIS Candidate shall recall that velocity is a vector with both madirection. As the flyer is rotating, the magnitude of speed = magnitude of constant. While rotating, the direction of movement of the point is chanvelocity changes as well. When the point returns to the original starting point, its velocit original value, so there is no change in velocity eventually. CAUTION Do not confuse between speed and velocity. Speed is constant throughout but the velocity is changing. 	gnitude and of velocity = nging, so its ty returns to		
		()	$r = \frac{C}{2\pi} = \frac{(0.24)(30)(60)}{2\pi} = 68.75 \text{ m} = 69 \text{ m} (2 \text{ s.f.})$		M 1	
			radius = <u>69 m</u>	OR <u>68.8 m</u>	A1	[2]
			 CAUTION Most students are taught to put 3 s.f. for all their answers in the fact, this is a very serious misconception. Ensure your final answer is in 2 s.f. because the final answer the "lower s.f. rule". 	ne school. In shall follow		

Nov 2020	Suggested Marking Scheme & Solutions	Syllabus	Marks
Paper 2	Singapore – Cambridge O Level Physics	6091	80

Nov 2020		Suggested Marking Scheme & Solutions Syllabus		Marks			
Paper 2		Singapore – Cambridge O Level Physics	6091	80			
2	(2)	not / resultant force = 0		D1			
3	(a)						
		OR		OR			
		upward/ thrust force = downward force / weight / gravitational force	•	(B1)	[1]		
		 <u>ANALYSIS</u> When the main remains stationary in mid-air, (downwards) weigh force. 	t = upward				
	(b)	(i) mass is total amount of substance / resist change in velocity		M1			
		weight is gravitational force / force of gravity acting on a body		A1			
		OR		OR			
		mass is constant everywhere while					
		weight depends on gravity / gravitational field strength / loca	weight depends on gravity / gravitational field strength / location				
		OR		OR			
		mass is a scalar quantity while		(M1)			
		weight is a vector quantity		(A1)			
		OR		OR			
		mass has unit kilogram while		(M1)			
		weight has unit newton.		(A1)	[2]		
		(ii) $m_{\text{total}} = m_{man} + m_{jetpack} = 75 + \frac{160}{10} = 91 \text{ kg}$		M 1			
		mass = <u>91 kg</u>	OR <u>91.0 kg</u>	A1	[2]		
		(iii) <i>F</i> – <i>mg</i> = <i>m</i> a					
		F = ma + mg = m(a + g) = 91(0.20 + 10) = 928.2 N		M1			
		Force = <u>928</u>	<u>n</u> or <u>930 n</u>	A1	[2]		

Nov 2020		Suggested Marking Scheme & Solutions		Marks	
Pap	ber 2	Singapore – Cambridge O Level Physics	6091	80)
4	(a)	product of force and distance / displacement		M1	
		moved in the direction of the force.		A1	[2]
	(b)	loss of gravitational potential energy		B1	
		& loss of kinetic energy are		B1	
		converted to thermal energy / heat & sound.		B1	[3]
		CAUTION			
		Most students mentioned about "GPE converted to KE", but the shuttle converted to KE".	ock slows		
		down actually, as mentioned in the question. So, it should be the loss of G	PE and		
		KE that is converted to heat and sound.			
	(c)	$KE = \frac{1}{2}mv^2$			
		$\frac{1}{2}(5.0 \times 10^{-3})v^2 = 0.36$		M1	
		speed	= <u>12 m s⁻¹</u>	A1	[2]

Nov 2020 Paper 2		Suggested Marking Scheme & Solutions Syllabus Singapore – Cambridge O Level Physics 6091		Marks 80	
•					-
5	(a)	higher filament resistance (than connecting wire).		M1	
		higher heat / thermal energy / power dissipation leading to higher temp	perature,	A 1	[2]
		so it glows.			
		 <u>ANALYSIS</u> As filament lamp has smaller cross-sectional area as compared to the wires, filament lamp has greater resistance. 	connecting		
		• Larger resistance implies greater heat dissipation using $P = I^2 R$.			
		 This causes higher temperature of filament lamp. 			
		 When a material experiences rise of temperature, it will emit EM radiu 	ation such		
		as the infrared. If temperature keep rising, it will emit all sorts of colo	ors		
		including those in the visible spectrum and finally it glows white when	all colors		
		are emitted.			
	(b)	filaments heat up surrounding gas molecules.		B1	
		hot molecules expand, becomes less dense and rises.		M1	
		colder air above is denser and falls,		A 1	[3]
		sets up convection current transferring thermal energy inside the lamp.			
	(c)	glass is solid / closely packed, so energy is transferred via vibration / c	collision	D1	[4]
		from hot to colder neighbouring glass molecules.		DI	[']
		 <u>ANALYSIS</u> Conduction only can occur in solid. Convection only occurs in flowing medium such as liquid and gas. Radiation doesn't require medium. 			

Nov 2020	Suggested Marking Scheme & Solutions	Syllabus	Marks
Paper 2	Singapore – Cambridge O Level Physics	6091	80

6 (a) (i)

name of component	wavelength / m		
Ultraviolet / UV	1 x 10 ⁻⁷	A1	
infrared	1 x 10 ⁻⁵	A1	[2

- (ii) x-ray OR gamma ray A1 [1] (ii) radioatherapy / chemotherapy / kill cancer cells OR damage biological molecules / abnormal cell division OR sterilising / disinfect medical equipment OR food preservation OR detect cracks in metal OR A1 [1] locate leaks from underground OR security scan OR dental scan OR bone diagnosis
- (b) (i) transverse waves OR carry no charge OR obey law of reflection / refraction OR no need medium/ travel in vacuum

(ii) $f = \frac{V}{\lambda} = \frac{3.0 \times 10^8}{2 \times 10^{-2}} = 1.5 \times 10^{10} \text{ Hz}$		M 1	
	frequency = <u>1.5 x 10¹⁰ Hz</u> OR <u>1.50 x 10¹⁰ Hz</u>	A1	[2]

Nov 2020		Suggested Marking Scheme & Solutions		Syllabus	Marks	
Рар	oer 2		Singapore – Cambridge O Level Physics	6091	80)
7	(a)	(i)	electrons / negative charges flow / move / transferred from sc cloth.	reen to	B1	[1]
		(ii)	unlike charges attract		B1	
			positive charges (on screen) attract negative charges of dust	near to	B1	
			screen attractive force is greater than repulsive force		B1	[3]
			 ANALYSIS As TV screen is positively charged, it attracts the negative charges between is positively charged, it attracts the negative charges between them, instead the charges stay on its surfaces Dust particles are neutral. While the left side of dust particles negatively charged, the right side of the particles are positively to maintain its neutrality. Attractive force between positive charges on screen & negative charge screen and dust particles., so the dust particles stick to the TV 	rges in the esfer of are y charged e charges ees on screen.		
	(b)	(i)	plastic rod <u>repels</u> glass rod.		B1	[1]
			<u>ANALYSIS</u> plastic rod is positively charged and like charges repel, exerts dow force on glass rod.	vnward		
		(ii)	rod experience non-contact repulsive electric force		B1	[1]

Nov 2020 S			Suggested Marking Scheme & Solutions	Syllabus	Marks	
Pap 8	er 2 (a)		Singapore – Cambridge O Level Physics	6091	80	
	(b)	<u>MAR</u> corre corre circle	EXING ect direction of arrows ect shape es with increasing distance V = IR		B1 B1 B1	[3]
			Effective resistance for rods in parallel = $\frac{1}{\frac{1}{1} + \frac{1}{1}} = 0.5 \Omega$		C1	
			12 = (6)(R+0.5) = (6)(R+0.5)		M1	
			resistan	ce = <u>1.5 Ω</u>	A1	[3]
		(ii)	Turns off faster OR can be reset OR can detect leakage of cur earth.	rent to	A1	[1]
			Please read Physics Compendium as the answers are there.			

Nov 2020	Suggested Marking Scheme & Solutions	Syllabus	Marks
Paper 2	Singapore – Cambridge O Level Physics	6091	80

9 (a)

	switch S ₁	switch S ₂	Δ1	
Point P	closed	closed	A1	[2]
Point R	open	open / closed		

<u>ANALYSIS</u>

- When S₁ and S₂ are closed, short circuit occurs and current flows will be maximum.
- When S₁ is opened, no current flows. So voltmeter reads e.m.f. E of the solar cell. As long as S₁ is opened, S₂ can be either closed or open as it doesn't affect the results needed.

(b) (i) $V = 4 \times 0.59 = 2.36 \text{ V}$

maximum voltage = <u>2.36 V</u> OR <u>2.4 V</u> A1 [1]

ANALYSIS

- *Refer to Table 9.1, for a single solar cell, the maximum voltage is 0.59 V.*
- When 4 solar cells are connected in series, we need to multiply the individual solar cell voltage by 4.

(ii) $I = \frac{V}{R} = \frac{2.36}{2} = 1.18 \text{ A}$

current = <u>1.18 A</u> OR <u>1.2 A</u> A1 [1]

Nov 2020	Suggested Marking Scheme & Solutions Syllabus		Marks		
Paper 2	Singapore – Cambridge O Level Physics 6091		80		
(c)	(i)	ratio of output power to input power and express in percentage).	B1 OR	
					F 4 1
		ratio of output energy to input energy and express in percentag	je.	(B1)	[1]
	(ii)	At P, voltage is zero		B1	
		At R, current is zero		B1	[2]
		 <u>ANALYSIS</u> Power = voltage x current. 			
		• At P, voltage is zero, so power output is zero.			
		• At R, current is zero, so power output is zero.			
		• Efficiency is the ratio of power output to power input. So, both	n P and R		
		have zero efficiency.			
	(iii)	1. efficiency = $\frac{\text{power output}}{\text{power input}} \times 100\%$			
		$0.18 = \frac{2}{\text{power input}}$		M 1	
		energy per second = <u>11.1</u>	<u>W</u> or <u>11 W</u>	A1	[2]
		2. surface area = $\frac{11.1}{1000}$			
		area = <u>0.0111 m²</u> C)R <u>0.011 m²</u>	A 1	[1]
	(iv)	brightness is proportional to maximum power output.		B1	[1]
		 <u>ANALYSIS</u> Power input is proportional to brightness since brightness is punit area (area is a constant). 	oower per		
	• From Table 9.1, brightness is proportional to maximum power output,				
		which implies power output is proportional to power input.			
	• Efficiency is ratio of power output to power input. so efficiency is				
		constant regardless of brightness.			
		0 - J - 0			

Nov 2020			Suggested Marking Scheme & Solutions	Syllabus	Mar	ks
Paper 2			Singapore – Cambridge O Level Physics	6091	80	
10	(a)	(i)	current reverses direction every half a cycle / revolution		B1	[1]
		(ii)	alternating current in primary coil generates / produces alternating /changing magnetic flux in in secondary coil experiences changing magnetic flux, so e.m.f. is induced in secondary coil.	on core	B1 M1 A1	[3]
	(b)	(i)	$f = \frac{1}{T} = \frac{1}{40 \text{ x } 10^3} = 25 \text{ Hz}$		M1	
			frequency = <u>25 Hz</u> a	and <u>25.0 Hz</u>	A1	[2]
		(ii)	$\frac{N_{\rm s}}{N_{\rm p}} = \frac{V_{\rm s}}{V_{\rm p}}$		A1	[1]
		(iii)	$V_{s} = 2 \times 5 = 10 \text{ V}$ $\frac{N_{s}}{N_{p}} = \frac{V_{s}}{V_{p}}$ $\frac{1}{4} = \frac{10}{V_{p}}$		M 1	
			ampl	itude = 40 V	A1	[2]

Nov 2020	Suggested Marking Scheme & Solutions	Syllabus	Marks
Paper 2	Singapore – Cambridge O Level Physics	6091	80

11	EITH	IER				
	(a)	ratio of	M1			
		speed (of light) in vacuum to speed (of light) in medium.	A1	[2]		
		CAUTION				
		Do not write "real/apparent depth" or $\sin I / \sin r$ as the question asked you to				
		define refractive index in term of speed.				
	(b)	(i) ray of light angle of incidence	B1 B1	[2]		
		(ii) $\eta = \frac{\sin i}{\sin r}$				
		$1.5 = \frac{\sin i}{\sin 30} \rightarrow \text{angle of refraction} = 48.6^{\circ}$	B1			
		angle of deviation = $48.6^{\circ} - 30^{\circ} = 18.6^{\circ}$	M1			
		angle = <u>18.6⁰</u>	A1	[3]		

Nov 2020	Suggested Marking Scheme & Solutions Syllabus		Marks		
Paper 2	Singapore – Cambridge O Level Physics 6091		80		
(c)	(i)	ray of light		A1	[1]
	(ii)	angle of incidence is greater than critical angle ray travels from denser to less dense medium		B1 B1	[2]
11 OR					
(a)	meas stand	sure resistance of wire when it is immersed in pure melting ice lard atmospheric pressure (ice point).	at	B1	
	measure resistance of wire when it is placed above steam / pure boiling water		M1		
	at standard atmospheric pressure (steam point).				
	divid	e the interval between the two values of resistance into 100 equ	ial parts.	A1	[3]
(b)	(i)	J ⁰ C ⁻¹ OR J K ⁻¹ OR joule per degree celsius OR joule per kelvir	ı	A1	[1]
	(ii)	1. $Q = mc\Delta\theta = (1.2)(4200)(90 - 20) = 352800 \text{ J}$			
		energy = <u>353000</u> J OR <u>350000</u> J OR <u>3.5 x 10⁵</u> J OR	<u>3.53 x 10⁵</u> J		
		2. energy wasted per year = $\frac{352800 \times 365}{3.6 \times 10^6}$		M 1	
		energy = <u>35.8</u> kW h 0	OR <u>36</u> kW h	A1	[2]
	(iii)	some energy is used to increase the temperature of the kettle	•	B1	
		some energy is lost to surroundings.		B1	[2]

Γ

WISH YOU SUCCESS IN A LEVEL 🥹

Nov 2020	Suggested Marking Scheme & Solutions	Syllabus	Marks
Paper 2	Singapore – Cambridge O Level Physics	6091	80

FOR TEACHER REFERENCE

QUESTION NUMBER	TOTAL MARKS
QUESTION 1	5
QUESTION 2	4
QUESTION 3	7
QUESTION 4	7
QUESTION 5	6
QUESTION 6	7
QUESTION 7	6
QUESTION 8	7
QUESTION 9 (DATA ANALYSIS)	11
QUESTION 10	9
QUESTION 11 (EITHER)	10
QUESTION 11 (OR)	10
TOTAL MARKS	80